- elliptic metric
- мат.эллиптическая метрика
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Elliptic geometry — (sometimes known as Riemannian geometry) is a non Euclidean geometry, in which, given a line L and a point p outside L, there exists no line parallel to L passing through p.Elliptic geometry, like hyperbolic geometry, violates Euclid s parallel… … Wikipedia
Lemaitre-Tolman metric — The spherically symmetric dust solution of Einstein s field equations was first found by Lemaitre in 1933 and then Tolman in 1934. It was later investigated by Bondi in 1947. This solution describes a spherical cloud of dust (finite or infinite)… … Wikipedia
Riemannian geometry — Elliptic geometry is also sometimes called Riemannian geometry. Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric , i.e. with an inner product on the tangent… … Wikipedia
Orbifold — This terminology should not be blamed on me. It was obtained by a democratic process in my course of 1976 77. An orbifold is something with many folds; unfortunately, the word “manifold” already has a different definition. I tried “foldamani”,… … Wikipedia
Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… … Wikipedia
Mathematics and Physical Sciences — ▪ 2003 Introduction Mathematics Mathematics in 2002 was marked by two discoveries in number theory. The first may have practical implications; the second satisfied a 150 year old curiosity. Computer scientist Manindra Agrawal of the… … Universalium
Michael Atiyah — Sir Michael Atiyah Born 22 April 1929 (1929 04 22) (age 82) … Wikipedia
Kepler problem in general relativity — The Kepler problem in general relativity involves solving for the motion of two spherical bodies interacting with one another by gravitation, as described by the theory of general relativity.Typically, and in this article, one body is assumed to… … Wikipedia
Non-Euclidean geometry — Behavior of lines with a common perpendicular in each of the three types of geometry Non Euclidean geometry is the term used to refer to two specific geometries which are, loosely speaking, obtained by negating the Euclidean parallel postulate,… … Wikipedia
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia